
## Intramolecular Platinum-Carbon Bond Formation Promoted by Steric Hindrance

By A. J. CHENEY, B. E. MANN, B. L. SHAW,\* and R. M. SLADE (School of Chemistry, The University, Leeds LS2 9JT)

Summary Bulky substituents on tertiary phosphine ligands co-ordinated to platinum(II) are shown to promote internal platinum-carbon bond formation.

THERE are many examples of internal transition metalcarbon bond formation involving nitrogen- or phosphorusdonor ligands,<sup>1</sup> but little is known about the factors which promote such metal-carbon bond formation. We have now found that bulky substituents on a tertiary phosphine ligand promote internal metal-carbon bond formation in some platinum(11) complexes. The bulky substituents studied are t-butyl and o-tolyl.



Thus, trans-PtCl<sub>2</sub>(PBu<sup>t</sup><sub>2</sub>Ph)<sub>2</sub> when heated under reflux for 12 h in 2-methoxyethanol solution gives PtX(C<sub>6</sub>H<sub>4</sub>- $PBu_{2}^{t}(PBu_{2}^{t}Ph)$  (I; X = Cl); the corresponding bromo- or iodo-complexes, (I; X = Br or I), are formed from trans-PtCl<sub>2</sub>(PBu<sup>t</sup><sub>2</sub>Ph)<sub>2</sub> by heating under reflux for 12 h in 2methoxyethanol with lithium bromide or sodium iodide, respectively. The complex  $PtCl(C_6H_4PBut_2)(PBut_2Ph)$  is non-conducting in nitrobenzene solution and monomeric in benzene. The <sup>31</sup>P n.m.r. spectrum (with random noise decoupling of the protons) consists of an AB pattern, with platinum satellites, and the large value of  $J_{PP}$  (388  $\pm$  5 Hz) is indicative of phosphorus ligand atoms in mutually transpositions.<sup>2</sup>

In contrast, the dimethylphenylphosphine complex cis-PtCl<sub>2</sub>(PMe<sub>2</sub>Ph), when heated under reflux with sodium iodide in 2-methoxyethanol for 51 h gives only cis-PtI<sub>2</sub>-(PMe<sub>2</sub>Ph)<sub>2</sub>. Similar treatment of cis-PtCl<sub>2</sub>(PMePh<sub>2</sub>)<sub>2</sub> for 97 h gave a mixture of cis- and trans- PtI<sub>2</sub>(PMePh<sub>2</sub>)<sub>2</sub>; no ring-closed compounds could be detected.

trans-PtCl<sub>2</sub>[ $PBut_2(p-C_6H_4Me)$ ]<sub>2</sub> when heated under reflux in 2-methoxyethanol forms the cyclised compound, PtCl[Me- $C_6H_3PBut_2$  [PBut<sub>2</sub> (p-C<sub>6</sub>H<sub>4</sub>Me)], (II) more rapidly (6-8 h) than does the corresponding complex from PBut<sub>2</sub>Ph.

It is known that p-tolylphosphine ligands undergo orthoattack more rapidly than phenylphosphine ligands.<sup>1</sup> The <sup>1</sup>H n.m.r. pattern of (II) is completely consistent with the assigned structure; in particular, proton Ha forms a doublet with platinum satellites at  $\tau$  4.51,  $J_{a,b}$  5.6,  $J(H_a-Pt)$ 66.6 Hz.

trans-PtCl<sub>2</sub>(PBu<sup>t</sup>Ph<sub>2</sub>)<sub>2</sub> will also undergo similar ring formation when heated under reflux in 2-methoxyethanol, but more slowly than the above-mentioned complexes. The cyclised complex, PtCl(C<sub>6</sub>H<sub>4</sub>PBu<sup>t</sup>Ph)(PBu<sup>t</sup>Ph<sub>2</sub>) is the minor product, the major product is the hydride, trans-PtHCl(PBu<sup>t</sup>Ph<sub>2</sub>)<sub>2</sub>. The corresponding bromides or iodides are made similarly; the tendency to ring close rather than form a hydride increasing in the order Cl < Br < I. trans-PtCl<sub>2</sub>[PBu<sup>t</sup>(p-C<sub>6</sub>H<sub>4</sub>Me)<sub>2</sub>]<sub>2</sub> when heated with lithium bromide in 2-methoxyethanol gives a similarly ring-closed product,  $PtBr[MeC_{6}H_{3}PBu^{t}(p-C_{6}H_{4}Me)][PBu^{t}-(p-C_{6}H_{4}-$ Me),].

The o-methyl group of an o-tolylphosphine can also be involved in ring formation. Thus when trans-PtCl<sub>2</sub>[P(o- $C_6H_4Me_{2}Ph_{2}$  is heated in 2-methoxyethanol either alone or with an alkali metal halide (LiBr or NaI), ring-closed complexes of type  $PtX[(o-C_6H_4CH_2-)PPh(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4Me)][P(o-C_6H_4$  $C_6H_4Me)_2Ph$ ] (III) are formed; as before, the rate of ring formation increases in the order Cl<Br<I. Similar ring formation involving a methyl group of di-o-tolylphenylphosphine has previously been observed with rhodium but the product,  $RhCl_2[(o-C_6H_4CH_2-)PPh(o-C_6H_4Me)]$ , was not obtained pure.<sup>3</sup> The crystal structure of dichlorodipyridine-[o-(di-o-tolylphosphino)benzyl]rhodium(III). formed from tri-o-tolylphosphine and rhodium trichloride with subsequent treatment with pyridine, has been reported recently.4

It is also possible to induce ring formation involving aliphatic chains; thus when trans- $PtCl_2(PBu^{t}, Pr^{n})_2$  is heated with 2-methoxyethanol either alone or with lithium bromide ring closed complexes are formed. The <sup>1</sup>H n.m.r. spectra of these complexes show the t-butyl groups to be intact, *i.e.* an n-propyl group is involved in ring formation. We prefer to formulate these complexes as PtX(-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- $PBut_2$  ( $PBut_2Pr^n$ ) (IV), X = Cl or Br, *i.e.* with fivemembered rings rather than four-membered rings because of the extra stability normally associated with five-membered rings. When trans- $PtCl_2(PBu^{t}Pr_{2})_2$  is heated with lithium bromide in 2-methoxyethanol the ring-closed compound PtBr(-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>PBu<sup>t</sup>Pr<sup>n</sup>)(PBu<sup>t</sup>Pr<sup>n</sup><sub>2</sub>) is formed together with  $trans-PtBr_2(PBu^tPr_2)_2$  and a trace of the hydride, trans-PtHBr(PBu<sup>t</sup>Pr<sup>n</sup><sub>2</sub>)<sub>2</sub>. The <sup>31</sup>P n.m.r spectrum (with random noise decoupling of the protons) of  $PtBr(-CH_2CH_2CH_2PBu^tPr^n)(PBu^tPr^n_2)$  shows  $J_{PP}$  to be large (396.3 Hz), indicative of trans-phosphines. Ring closure of triethylphosphine to platinum(11) is thought to occur when  $trans-PtCl_2(PEt_3)_2$  is treated with lithium derivatives of carboranes.<sup>5</sup>

Our results show that bulky substituents on tertiary phosphines promote internal metal-carbon bond formation. Phosphine ligands with two t-butyl groups undergo ring closure more readily than phosphines with only one t-butyl group and tertiary phosphines with smaller steric requirements such as dimethylphenylphosphine show no tendency to ring close. In complexes such as trans-PtCl<sub>2</sub>(PBut<sub>2</sub>Ph)<sub>2</sub> the environment of the platinum is very crowded but by elimination of chloride, in a ring closure reaction the environment of the platinum becomes less crowded. Steric factors may also lower the activation energy of the

- <sup>1</sup> G. W. Parshall, Accounts Chem. Res., 1970, 3, 139. <sup>2</sup> J. F. Nixon and A. Pidcock, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 345.
- <sup>3</sup> M. A. Bennett and P. A. Longstaff, J. Amer. Chem. Soc., 1969, 91, 6266.

- <sup>4</sup> R. Mason and A. D. C. Towl, J. Chem. Soc. (A), 1970, 1601.
  <sup>5</sup> S. Bresaldola, P. Rigo, and A. Turco, Chem. Comm., 1968, 1205.
  <sup>6</sup> N. A. Bailey, J. M. Jenkins, R. Mason, and B. L. Shaw, Chem. Comm., 1965, 237.
  <sup>7</sup> S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.

metal-carbon bond-forming reaction by forcing the metal and the carbon-hydrogen bond on the ligand closer together. In PdI<sub>2</sub>(PMe<sub>2</sub>Ph)<sub>2</sub> ortho-hydrogens of the phenyl groups are only 2.8 Å from the centre of the metal<sup>6</sup> and in  $\operatorname{RuCl}_2(\operatorname{PPh}_3)_3$  only 2.6 Å;<sup>7</sup> with more sterically-hindered phosphines the distance could be even less.

(Received, July 20th, 1970; Com. 1164.)